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Abstract

Objectives Oxidative stress as well as inflammation processes are engaged in dia-
betic vascular complications. Rosmarinic acid, a natural phenol antioxidant car-
boxylic acid, was found to have multiple biological activity, including anti-
inflammatory and antitumour effects, which are a consequence of its inhibition of
the inflammatory processes and of reactive oxygen species scavenging. The aim of
this work was to study effects of rosmarinic acid administration on vascular
impairment induced by experimental diabetes in rats.
Methods Diabetes was induced by streptozocin (3 ¥ 30 mg/kg daily, i.p.) in
Wistar rats. Rosmarinic acid was administered orally (50 mg/kg daily). Ten weeks
after streptozocin administration, the aorta was excised for functional studies,
evaluation by electron microscopy and real time PCR analysis.
Key findings In the aorta of diabetic rats, decreased endothelium-dependent
relaxation was accompanied by overexpression of interleukin-1b, tumour necrosis
factor-a, preproendothelin-1 and endothelin converting enzyme-1. Structural
alterations in the endothelium, detected by electron microscopy, indicated aortic
dysfunction caused by diabetes. The diabetes-induced aortic disorders were pre-
vented by rosmarinic acid administration.
Conclusions Rosmarinic acid protected aortic endothelial function and
ultrastructure against diabetes-induced damage. Both antioxidant and anti-
inflammatory effects of rosmarinic acid seemed to participate in the mechanism
of this protection.

Introduction

In spite of significant achievements in diagnosis and treat-
ment, cardiovascular disorders are the most common com-
plications of diabetes and major causes of morbidity and
mortality in diabetic patients.[1,2] Changes in vascular
responsiveness to several vasoconstrictors and vasodilators
are signals of development of some vascular complications
in diabetes. It is becoming increasingly clear that oxidative
stress is an important contributor to the onset and develop-
ment of micro- and macrovascular complications of the
disease. Indeed, recent in-vitro and in-vivo studies have
shown that short-term and long-term antioxidant interven-
tions could improve endothelial function in diabetes, sug-
gesting a pathological role for oxygen-derived free radicals

in the impaired vascular responses.[3] Along with oxidative
stress, inflammation processes are engaged in diabetic vas-
cular complications. Hyperglycaemia was found to induce
signalling pathways that give rise to the inflammatory
profile of the disease. Inflammatory cytokines, like
interleukin-1 (IL-1) and tumour necrosis factor-a (TNF-
a), were reported to exert multiple effects leading to pro-
thrombotic and proinflammatory changes on the vascular
endothelium.[4] Chronic hyperglycaemia accelerates the for-
mation of advanced glycation end products (AGEs) and
accumulation of AGEs in various tissues. According to
recent knowledge on diabetic vascular complications,
AGEs, by means of their receptors together with high-
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mobility-group box-1 protein and Toll-like receptors, play a
key role in initiating the inflammatory state triggered by
hyperglycaemia.[5]

Some phenolic compounds were found to improve reac-
tivity of diabetic vessels by their antioxidant activity. For
instance, soy isoflavones like genistein are beneficial in pre-
venting some diabetic complications via attenuating oxida-
tive stress in the aortic tissue.[6] Salvianoic acid A, the main
effective, water-soluble constituent of Salvia miltiorrhiza, a
well-known herb of traditional Chinese medicine, was
reported to significantly improve glucose metabolism and
inhibit oxidative injury, as well as to protect against
impaired vascular responsiveness in streptozocin-induced
diabetes in rats.[7]

Rosmarinic acid (2‘R’)-2-[[(2‘E’)-3-(3,4-dihydroxyphenyl)-
1-oxo-2-propenyl]]oxy]-3-(3,4-dihydroxyphenyl)propanoic
acid) is a natural phenol carboxylic acid. It is a secondary
metabolite found in many Lamiaceae herbs used commonly
as culinary herbs, such as lemon balm, rosemary, oregano,
sage, thyme and peppermint.[8] Extracts from Lamiaceae
plants possess a wide scale of beneficial effects. For example,
extracts of Mentha piperita leaves, containing rosmarinic
acid as the main phenolic constituent, are used for antioxi-
dant and anti-inflammatory purposes.[9] Rosmarinic
acid has multiple biological activity, including anti-
inflammatory and antitumour effects.[10,11] The latter are
consequences of its inhibition of inflammatory processes
and of reactive oxygen species scavenging.[12,13] Anti-
inflammatory activity of rosmarinic acid was documented
in experiments with apolipoprotein E-deficient mice, where
it inhibited progression of atherosclerotic plaques by
decreasing blood lipids and serum levels of proinflamma-
tory cytokines TNF-a and IL-1b.[14] The capability to
inhibit inflammatory processes and to scavenge oxygen free
radicals makes rosmarinic acid a suitable candidate for pro-
tection of vessels against detrimental effects of long-lasting
hyperglycaemia. Since there are no accessible publications
dealing with the effect of rosmarinic acid in diabetic com-
plications, the aim of this work was to study the impact of
rosmarinic acid administration on vascular impairment
induced by experimental diabetes in rats.

Materials and Methods

Streptozocin-induced diabetes

Male Wistar rats (13-weeks old, 300–325 g) from the Breed-
ing Facility of the Institute of Experimental Pharmacology
and Toxicology Dobrá Voda (Slovak Republic) were used.
Animal experiments were conducted under the guidelines
of the Ethics Committee of the Institute of Experimental
Pharmacology and Toxicology, Slovak Academy of Sciences
and were approved by the State Veterinary and Food

Administration of the Slovak Republic (number of the deci-
sion: Ro 1664/08-221d, July 18, 2008).

Diabetes was induced by a repetitive intraperitoneal
dose of streptozocin (30 mg/kg; Sigma-Aldrich, St Louis,
MO, USA) for three consecutive days. This protocol was
chosen based on our pivotal studies evaluating different
methods of streptozocin administration with the aim to
induce a gradual onset of diabetes. Streptozocin was dis-
solved in 0.1 mol/l citrate buffer, pH 4.5. Animals with
blood glucose concentration > 15 mmol/l were considered
diabetic. Diabetes was induced in all rats administered
streptozocin. Control animals received buffer only. The
animals were divided into four groups containing seven
animals: C, control rats; R, control rats treated with ros-
marinic acid; D, diabetic rats; DR, diabetic rats treated
with rosmarinic acid. Starting on the first day after the
third dose of streptozocin, rosmarinic acid (Sigma-Aldrich
Chemie Gmbh, Munich, Germany) was administered by
an intragastric probe at a daily dose of 50 mg/kg.

Ten weeks after streptozocin administration, the rats
were sacrificed by exsanguination in thiopental anaesthesia
and the aorta was excised for functional studies, evaluation
by electron microscopy and real time PCR analysis.

The weight of animals was registered weekly, water con-
sumption daily. Blood glucose, blood pressure and heart
rate were monitored at the end of the experiment. Plasma
glucose levels were measured using the commercial Glucose
(Trinder) kit (Sigma-Aldrich). Plasma thiobarbituric acid
reactive substances (TBARS) level as a measure of lipid per-
oxidation was determined according to Esterbauer.[15] Blood
pressure was measured noninvasively by tail cuff plethys-
mography using the AD Instruments, PowerLab MLT 125/R
(Colorado Springs, CO, USA).

Rat isolated aorta

The thoracic aorta was excised and transferred into oxygen-
ated physiological salt solution (PSS). The arteries were
cleaned of adherent tissue and cut into eight rings, each
approximately 2–3-mm long. Special care was taken not to
damage the endothelium. The rings were mounted between
two hooks in water-jacketed (37°C) chambers containing
PSS bubbled with a mixture of 95% O2 and 5% CO2 at pH
7.4. The composition of PSS was (in mmol/l): NaCl (118.0),
KCl (4.7), KH2PO4 (1.2), MgSO4 (1.2), CaCl2 (2.5), NaHCO3

(25.0) and glucose (11.0). The preparations were connected
to an isometric force transducer (Experimetria Hungary),
stretched passively to 20 mN and equilibrated for 60 min.

After the equilibration period, contraction was induced
by a submaximal concentration of phenylephrine (10-6 mol/
l). At the plateau of the contraction, the effect of acetylcho-
line in the cumulative concentrations of 10-8–10-5 mol/l was
tested as a measure of endothelial function. After washing
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with PSS and reaching the initial tension value,
concentration–response curves of sodium nitroprusside
(10-10–10-7 mol/l) were performed in phenylephrine-
precontracted preparations.

Isolation of RNA and real-time PCR

Total RNA was isolated from 3-mm aortic rings using Tri-
Reagent (Ambion, Grand Island, NY, USA). Isolated RNA
was verified to be intact by using agarose gel electrophore-
sis. Reverse transcription to cDNA was performed using
High Capacity cRNA RT Kit with RNAse inhibitor (Applied
Biosystems, Grand Island, NY, USA), 500 ng RNA were
reverse-transcribed to cDNA. Levels of preproendothelin-1
(ET-1), ETA receptor, ETB receptor, endothelin converting
enzyme-1 (ECE-1), interleukin-6 (IL-6), TNF-a and IL-1b
mRNAs were evaluated using real-time PCR (ABI Prism
7300, Applied Biosystems, USA) with gene-specific primers
with SYBR green detection (Power SYBR Green PCR Master
Mix, Applied Biosystems, USA). Beta actin was used as a
housekeeping gene. The delta-delta Ct method was used for
quantification.[16] All primers were verified to yield a single
PCR product with the correct molecular weight and the
absence of signal was verified when reverse transcription
was omitted. Primer sequences were as follows (5′ to 3′)
ET-1: forward: AACTCCGAGCCCAAAGTACC, reverse
CTTGATGCTGTTGCTGATGG; ETA: forward: TGGGAA
GTTTCCTCCAGCCGAGA, reverse: TCCTTCCCCTTAG
AGCTCCTCGGA; ETB: forward: TTGCCGCTAGCCATC
ACTGCGA, reverse: GGCAAACACGAGGACCAGGCAGA;
ECE-1: forward: TTCCCGACGGTCACTCACGC, reverse:
GCCGTGGAATTTTCCAGCAGATGC, IL-6: TCTCTCCG
CAAGAGACTTCC, reverse: GTCTCCTCTCCGGACTT
GTG; TNF-a: forward: AACTTCGGGGTGATCGGTCCCA,
reverse: TACGACGTGGGCTACGGGCTT; IL-1b: forward:
AATCCCTGTGGCCTTGGGCCTC, reverse: GGATCCA
CACTCTCCAGCTGCAGG; actin: forward: CCGCGAGTA
CAACCTTCTTG, reverse: GCAGCGATATCGTCATCCA.

Western blotting

In the aorta, expressions of endothelial nitric oxide synthase
(eNOS), caveolin-1 (cav-1), caveolin-3 (cav-3), heat shock
protein 90 (hsp90), manganese superoxide dismutase
(MnSOD) and housekeeping protein actin were evaluated
in tissue homogenates using SDS-PAGE and immunoblot
analysis with chemiluminescent detection.[17]

Transmission electron microscopy

Cleaned aortic rings 3-mm long were immersion fixed in
2% glutaraldehyde in 0.1 mol/l sodium cacodylate buffer
(Serva, Heidelberg, Germany) (pH 7.4) for 3 h at 4°C. After
washing, the samples were postfixed in 1% OsO4 for

30 min, dehydrated in a series of alcohol, infiltrated in pro-
pylene oxide and embedded to Epon 812 (Sigma-Aldrich).
Ultrathin sections using the Ultramicrotome (LKB, Cam-
bridge, UK) were cut with a diamond knife and mounted
on nickel grids. Toluidine blue stained sections (1-mm
thick) were examined under a light microscope and appro-
priate areas of tissue were selected for cutting thin sections.
Sections were stained with uranyl acetate and lead citrate,
and examined using a transmission electron microscope
Tesla BS 500 (Brno, Czech Republic).

Data analysis

The relaxation responses to acetylcholine are expressed in
mN/mg tissue. Statistical analyses were performed by using
two-way analysis of variance with Bonferroni post test. Sta-
tistical significance was indicated at P less than 0.05.

Results

Effect of rosmarinic acid on diabetic
markers

Streptozocin-diabetes-induced characteristic changes were
found in body weight gain, daily water consumption, and
blood glucose levels. Rosmarinic acid did not influence the
body weight gain or blood glucose levels of either the
control or diabetic rats. Neither was blood pressure influ-
enced by diabetes or administration of rosmarinic acid.
However, the heart rate of diabetic rats was lower than that
of controls (P < 0.05). Rosmarinic acid administration did
not exert a significant effect on heart rate of control or dia-
betic animals. Rosmarinic acid did not affect enhanced daily
urine production in diabetic rats. However, the daily water
consumption was decreased by rosmarinic acid administra-
tion in both control (**P < 0.01) and diabetic groups
(***P < 0.001) (Table 1).

Plasma levels of the oxidative stress indicator TBARS
were increased in diabetic rats compared with controls
(**P < 0.01). Rosmarinic acid had no effect on control
values, yet it depressed those of diabetic rats (xP < 0.05 vs D;
Table 1).

Rat isolated aorta

As shown in Figure 1, diabetes blunted the endothelium-
dependent relaxations (**P < 0.01 vs control and R groups).
We also observed a decreased sensitivity to acetylcholine –
pD2 (C 6.85 � 0.09; D 6.30 � 0.08; *P < 0.05). In control
rats, rosmarinic acid did not influence relaxation signifi-
cantly (pD2 6.93 � 0.07). When administered to diabetic
rats, rosmarinic acid improved the relaxation to values not
different from the control values, with pD2 6.62 � 0.07.
Endothelium-independent relaxation of the aorta induced
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by sodium nitroprusside was not influenced by diabetes or
administration of rosmarinic acid (not shown).

Inflammatory cytokines

Although experimental diabetes was not associated with
increased levels of IL-6 in the aorta, treatment of diabetic
rats with rosmarinic acid led to significantly decreased
levels of IL-6 mRNA compared with controls (*P < 0.05,
Figure 2). IL-1b and TNF-a were overexpressed more than
twofold in the aortas from untreated diabetic rats
(*P < 0.05). Rosmarinic acid alone had no effect on the
expression of these cytokines, but it completely prevented
the upregulation of IL-1b and TNF-a in diabetic rats
(Figure 2).

Components of the endothelin pathway

The expression of endothelin-1 precursor ET-1 was
increased more than sixfold in the untreated diabetic rats
(*P < 0.05; Figure 2). Rosmarinic acid treatment had no

effect on the levels of ET-1 mRNA in healthy rats nor did it
prevent ET-1 upregulation in diabetic rats. Expression of
the smooth muscle-specific ETA receptor was not altered by
experimental diabetes, however rosmarinic acid treatment
led to significant downregulation of the ETA receptor
mRNA in both healthy and diabetic rats (*P < 0.05;
Figure 2). ETB receptor mRNA levels only tended to be
increased in the diabetic group (P = NS). Rosmarinic acid
treatment decreased ETB receptor expression in healthy rats
(*P < 0.05 vs C) and decreased expression of ETB receptor
in the diabetic group (#P < 0.05 vs D). Finally, the expres-
sion of ECE-1 was increased in the diabetic group com-
pared with controls (*P < 0.05). Rosmarinic acid prevented
the upregulation of ECE-1 (#P < 0.05 vs D) (Figure 2).

Western blot analysis of isolated aorta

Diabetic rats had significantly increased levels of eNOS
protein in the aorta (*P < 0.05; Figure 3). Rosmarinic acid
alone had no effect and it did not alter the upregulation
associated with diabetes. Expression of hsp90, a positive
allosteric modulator of eNOS, was not changed by diabetes
or treatment with rosmarinic acid. We also evaluated the
expression of cav-1, a negative modulator of eNOS activity.
Cav-1 levels were not altered by diabetes or by rosmarinic
acid. Smooth muscle-specific cav-3 expression was not
changed. Expression of the superoxide-quenching enzyme
MnSOD tended to be increased in diabetic groups, but the
increase did not reach statistical significance and rosmarinic
acid had no effect on the level of this protein (Figure 3).

Transmission electron microscopy

Electron microscopic analysis of the endothelium of the
aorta of 5-month-old healthy Wistar rats revealed generally
an intact structure of the monolayer. However, weak subcel-
lular alterations of endothelial cells were locally observed,
characterized by irregular cellular shape, increased forma-
tion of luminal protrusions and endothelial denudation.
These abnormalities demonstrated age-related endothelial

Table 1 Effect of rosmarinic acid on characteristics of diabetes

Group C Group R Group D Group DR

Glycaemia (mmol/l1) 6.0 � 0.2 6.2 � 0.1 29.57 � 0.4*** 29.84 � 0.1***
Body weight (g) 420.0 � 22.5 415 � 7.8 243.6 � 21.3*** 261.4 � 6.7***
Blood pressure (mmHg) 99.2 � 4.5 110.1 � 4.8 101.5 � 4.0 107.2 � 6.1
Heart rate (beats/min) 316.9 � 12.5 337.1 � 14.3 269.8 � 6.9** 283.5 � 8.4*
Daily water consumption (ml) 31.9 � 0.5 27.7 � 0.5*** 175.9 � 4.6*** 155.5 � 4.5xxx ***
Daily urine (ml) 0.4 � 0.9 0.5 � 0.1 2.0 � 0.2*** 1.9 � 0.2***
TBARS (mmol/mg protein) 3.3 � 0.3 3.2 � 0.2 4.5 � 0.1** 3.9 � 0.2x

C, control group; R, control group treated with rosmarinic acid (50 mg/kg per day); D, diabetic group; DR, diabetic group treated with rosmarinic
acid (50 mg/kg per day); TBARS, thiobarbituric acid reactive substances. *P < 0.05 vs C; **P < 0.01 vs C; ***P < 0.001 vs C; xP < 0.05 vs D;
xxxP < 0.001 vs D.
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cell alterations. We did not observe abnormalities in the
ultrastructure of smooth muscle cells and the aortic wall
morphology in control animals (Figure 4a). On the other
hand, chronic diabetes mellitus affected adhesive properties
and permeability of the endothelium, manifested by
adhesion of circulating blood cells to the endothelium
and extension of interendothelial connection (Figure 4b).
Increased presence of collagen fibres in the subendothelium
and irregular location of smooth muscle cells, locally with
subcellular abnormalities in the subendothelium and tunica

media (Figure 4c), characterize diabetes mellitus-induced
structural remodelling of the aortic wall. An unimpaired
endothelial monolayer structure was observed in the aorta
of diabetic rats treated with rosmarinic acid, suggesting
protective effects of the compound. In this group of
animals, in contrast to the aorta of diabetic rats, the
endothelial layer was more compact, comparable with the
aorta of control nondiabetic animals. Moreover, endothelial
cells of irregular shape and cells filled with numerous pino-
cytic vesicles were occasionally found, indicating active

SMC

SMC

CC

CC

CC

EC

EC

EC
ECCol

(c)

(a) (b)

(d)

Figure 4 Electron microgaphs of the thoracic aorta of control Wistar rats (a), diabetic rats (b, c) and diabetic rats treated with rosmarinic acid (d).
EC, endothelial cells; SMC, smooth muscle cells; CC, blood circulating cells; Col, collagen fibres; arrow, widened intercellular junctions containing
myelinized structures. Magnification: Bar = 1 mm.
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transport within the endothelium. In spite of the preserved
endothelial integrity, we observed collagen fibres and leuco-
cytes in the subendothelium of the aorta of diabetic rats
treated with rosmarinic acid (Figure 4d).

Discussion

Administration of streptozocin to rats evoked typical signs
of diabetes – hyperglycaemia, body weight reduction,
increase in water consumption and daily urine output. In
the cardiovascular system, diabetes induced a decrease in
heart rate but blood pressure was not affected, in accord-
ance with Hicks et al.[18] who explained heart rate changes in
diabetic rats by diabetes-induced changes in autonomic
nervous control of cardiac function. None of the typical
manifestations of diabetes were influenced by rosmarinic
acid administration, except a reduction in daily water con-
sumption, a phenomenon which would deserve further
investigation.

In agreement with others, we found blunted
endothelium-dependent relaxation of the aorta, yet
unchanged endothelium-independent relaxation, indicating
diabetic functional injury of the endothelium rather than of
vascular smooth muscle.[19–21] Further, subcellular abnor-
malities of the endothelium indicated endothelial dysfunc-
tion, injured physical endothelial barrier and inflammatory
processes. These may result in diapedesis of leucocytes and
macrophages, and possibly in affecting lipid transport –
mechanisms supporting stimulation of vascular wall
remodelling. Inflammation induced by diabetes was mani-
fested also by overexpression of proinflammatory cytokines
IL-1b and TNF-a in the aortic tissue.

The obtained results showed protective effects of ros-
marinic acid on vascular changes induced by streptozocin-
diabetes in rats. Natural polyphenols are accepted to have a
high antioxidant activity. These properties are desirable in
prevention/treatment of chronic complications of diabetes,
affecting besides others diabetic vasculopathies. Protective
effects of natural antioxidants are explained mainly by their
effect on oxidative stress, which is known to play a role in
diabetes (see Maritim et al.[22]). In our previous experi-
ments, we found rosmarinic acid to exert antioxidant activ-
ity in-vitro and also ex-vivo in the experimental model of
rat mesenteric ischaemia/reperfusion (I/R), where ros-
marinic acid suppressed chemiluminescence of intestinal
tissue increased by I/R.[23,24] Rosmarinic acid had also a pro-
tective effect against cyclophosphamide toxicity in mice.[25]

Confirming our suggestions, rosmarinic acid administered
to diabetic rats protected their aortas against diabetes-
induced endothelial injury. Rosmarinic acid was adminis-
tered orally, as it is well absorbed from the gastrointestinal
tract and was found to be effective after oral supplementa-
tion to humans.[26,27]

After rosmarinic acid administration, we observed an
amelioration of relaxant responses to acetylcholine, which
was a manifestation of improved vascular endothelial func-
tion. In correlation, rosmarinic acid-supplementation also
suppressed hyperglycaemia-induced subcellular alterations
of the aortal endothelium. In contrast with diabetic aortas,
the endothelial layer of rosmarinic acid-treated aortas was
more compact, comparable with the aorta of nondiabetic
rats. We assumed that the observed vascular alterations
found in diabetic aortas were a consequence of detrimental
effect of oxidative stress and thus they could be reduced by
rosmarinic acid administration. Indeed, streptozocin-
diabetes was documented by typical signs of oxidative stress
in plasma (increase in TBARS), which is in agreement with
several experimental as well clinical reports.[28–30] Reduction
of increased levels of TBARS by natural polyphenols was
also reported.[31] Yet we failed to find any significant increase
in the MnSOD expression in diabetic aortas. Superoxide
dismutase (SOD) is an enzyme that primarily contributes to
cellular defences against oxidative stress, and plays a role in
the conversion of superoxide anion to H2O2. Expression of
MnSOD is much lower than that of CuZn-SOD and extra-
cellular SOD in blood vessels, nevertheless MnSOD plays a
critical role in protection against mitochondrial damage
induced by oxidative stress.[32] During the situations involv-
ing oxidative stress, expression of MnSOD has a biphasic
time course.[33] This could be the reason why we did not
observe marked changes in expression of MnSOD.

The injured endothelium-dependent relaxation of the
diabetic aorta is believed to be the consequence of a
decreased bioavailability of nitric oxide (NO) – an impor-
tant and widespread signalling molecule. Long-lasting
hyperglycaemia and dyslipidaemia during diabetes, leading
to an overproduction of reactive oxygen species, have a
major share in the decline in NO bioavailability. One of the
reasons of decreased NO bioavailability accompanying
endothelial dysfunction could also lie in an impairment of
eNOS expression. However, conflicting reports exist regard-
ing altered expression of eNOS in diabetes. Under hypergly-
caemic conditions, human aortic endothelial cells have
been shown to have either reduced or increased eNOS
expression.[34–36] In endothelial cell cultures of mouse micro-
vessels, high glucose levels led to increased eNOS.[37] In our
experiments, diabetes induced an increase in eNOS expres-
sion and no change in its regulatory proteins cav-1, cav-3,
or 28hsp90, which could affect NO production by eNOS.
Cai et al.[38] and Leo et al.[39] also demonstrated that in the
large vessels, NO synthesis was significantly impaired in dia-
betes but eNOS expression was significantly increased. In
spite of increased eNOS expression, decreased NO synthesis
could be caused by decreased proportion of eNOS present
as a functionally coupled dimer or decreased activation of
eNOS by decreasing the level of phosphorylation of Akt.[40]
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Phosphorylation and dephosphorylation belong to major
post-translational regulatory influences on eNOS activity.
Bovine eNOS phosphorylation at serine residue 1179
(S1179), corresponding to S1177 in human eNOS, was
reported to increase eNOS enzymatic activity and NO pro-
duction, while proinflammatory cytokines such as inter-
leukins and TNF-a decreased eNOS phosphorylation, thus
inhibiting NO production.[41,42] Streptozocin-diabetes in our
experiments induced an increase in mRNA of proinflam-
matory mediators IL-1b and TNF-a in the aorta, which was
reduced to control values in the aortas of rosmarinic acid-
treated diabetic rats. These findings support the anti-
inflammatory properties of rosmarinic acid reported by
several other authors. For instance, al-Sereiti et al.[26] found
rosmarinic acid to increase the production of prostaglandin
E2, reduce the production of leukotriene B4 in human poly-
morphonuclear leucocytes, and inhibit the complement
system. Rosmarinic acid inhibited cyclooxygenase-2 expres-
sion in mouse macrophages.[43] Moreover, rosmarinic acid
reduced lipopolysaccharide-induced liver injury in
d-galactosamine-sensitized mice by inhibition of the
expression of important inflammatory mediators, including
the cell adhesion molecules intercellular adhesion molecule
1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-
1).[44] Rosmarinic acid administration to ovalbumin-
sensitized mice inhibited protein levels and mRNA
expressions of interleukins, IL-1b, IL-6 and TNF-a in the
nasal mucosa tissue and spleen.[45] We speculate that ros-
marinic acid could protect the endothelium and thus amel-
iorate endothelium-dependent relaxation by inhibiting
inflammatory reactions in the aorta.

Since the endothelin-1 pathway might also be involved in
endothelial dysfunction, in our experiments we investigated
whether hyperglycaemia regulated expression of compo-
nents of this pathway in the aorta. ET-1 is a vasoconstrictor,
proinflammatory and proliferative endothelial cell-derived
peptide that plays a significant role in the regulation of vas-
cular function. The expression and functional effects of
ET-1 and its receptors become markedly altered during the
development of cardiovascular diseases. Oxidative stress was
found to increase ET-1 generation and autocrine ET-1
activity in vascular smooth muscle cells, a mechanism that
might contribute to endothelial dysfunction.[46] Further,

ET-1 upregulation was reported in people with diseases
connected with oxidative stress, such as type II diabetes
mellitus, central obesity, and hypertension.[47] In agreement
with Su et al.,[19] we found upregulated mRNA expression of
ET-1 and ECE-1 in the thoracic aorta of diabetic rats.
Although rosmarinic acid did not statistically influence
upregulation of ET-1 mRNA found in diabetic aortas, it
decreased ETA and ETB receptor expression and the expres-
sion of ECE-1. These results were compatible with the
hypothesis that production and receptor-mediated effects of
ET-1 are decreased after rosmarinic acid-administration,
contributing to an improvement of endothelial function
and of remodelling.

Conclusions

Our results showed that the 10-week lasting streptozocin-
diabetes in rats was accompanied by oxidative stress and
inflammatory processes. We documented increased plasma
levels of TBARS and injury of the endothelial function of
the aorta, involving blunted acetylcholine-evoked relaxation
connected with ultrastructural alterations, upregulation of
inflammatory cytokines and a stimulated endothelin
pathway. Rosmarinic acid protected aortic endothelium-
dependent relaxation and the ultrastructure against
diabetes-induced damage. The antioxidant and anti-
inflammatory effects of rosmarinic acid seemed to partici-
pate in the mechanism of this protection.
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