

Randall Nelson USDA-Agricultural Research Service University of Illinois

Eras of U.S. Soybean Breeding

Expansion and mechanization (1966 to 1995)

- Tractor planting and combines
- Computers for data management
- More private and public breeders
- Transition to proprietary varieties
- Transgenics (1996 to present)
 - Equipment advances
 - Off season nurseries
 - Marker assisted selection
 - Increase in genetic research

Changes in US yield (kg/ha)

Eras of U.S. Soybean Breeding

Soybean introduction (to 1943)

- Varieties introduced from Asia

Scientific plant breeding (1944-1965)

Fewer than 2 varieties/yearHand planting and harvesting

Within and among variety selection

• 15 soybean breeders in North America

What determines average yield?

- Environment
 - Rainfall
 - Soil type
- Diseases and pests
- Genetic base of the crop
- Genetic potential of each variety

How do we increase yield?

- Improve physiological efficiencies
- Provide protection from diseases and pests
- Tolerance to abiotic stresses

Where are we?

- ✓ We are still making progress
- ✓ Gains per unit input are decreasing
- ✓ There is potential for increase

What can plant breeders do?

- Change breeding efficiency
- Expand the genetic base
- Incorporate transgenes

Increasing breeding efficiency

Variety development time

Improved selection techniques

- Marker assisted selection
- Disease and insect resistance
- Yield
 - Parent selection
- Within population selection Improved field testing

Expanding the Genetic Base

- Current U.S. genetic base
 - 35 ancestors account for 96% of genes 6 ancestors provide 60% of the genes 7 crosses contributed 70% of the genes Pool ~85% complete by 1954 Pool ~95% complete by 1970

Japanese Soybean Gene Pool

53 ancestors account for 80% of genes
18 ancestors account for 50% of genes
91% of ancestral lines from Japan
Regionally distinct gene pools
Low coefficient of parentage among cultivars

Zhou et al. 2000. Crop Sci. 40:1794–1802

Sequence Analysis of Cultivated and Wild Soybean

- 26 G. soja accessions from China, Korea, Japan and Russia.
- 52 Asian *G. max* primitive varieties from China, Korea and Japan
- 17 major ancestors of N. American cultivars
- 25 modern U.S. cultivars

Hyten et al. 2006. PNAS 103: 16666

Sequence Analysis of 120 Cultivated and Wild Soybean Genotypes

111 Sequence Tagged Sites derived from 102 complete GenBank genes and cDNAs

21.9 kbp coding17.9 kbp intron11.2 kbp '3 & 5' UTR2.2 intergenic sequence

Total = 53.1 kbp

Nucleotide Diversity Terminology

Watterson's θ = Mean SNPs per site adjusted for population size (θ_w = 0.001 = 1 SNP/kbp)

Sucleotide Diversity, θ_w (x 10 ³) in Coding and Non- coding Regions in Four Soybean Populations				
Population T	otal coding	Total non-coding	Total	
Wild soybean	1.63 a	3.06 a	2.35 a	
Asian primitive varieties	0.81 b	1.36 b	1.15 b	
N. American ancestors	0.73 b	1.16 bc	1.00 bc	
Modern cultivars	0.59 b	0.92 c	0.83 c	

Allele frequency changes in 102 genes		
Domestication bottleneck		
G. soja/Prim. varieties:	61 genes	
Introduction bottleneck		
Prim. varieties/N. Am. Ancestors:	28 genes	
Improvement bottleneck		
N. Am. ancestors/Elite cultivars:	7 genes	

Expanding the Genetic Base

- Current genetic base
- Understanding genomic control
- Sequencing of the soybean genome
- Many germplasm lines not used

PI 90566-1 x Williams 82 (4)				
Entry	Kg/ha	Mat	Ldg	Hgt
Williams 82	3272	9-27	1.7	109
LG05c-1341	3910	9-27	1.9	109
IA3023	4078	9-20	1.4	91

PI 90566-1 came from Jilin, China in 1930 LG05c-1341 has 93% of Williams 82 genes And 7% of the genes from PI 90566-1

2008 Uniform IV Test at 11 locations				
Entry	exotic	Pedigree	Kg/ha	Mat
LG04-5190	(50)	LG97-9384 x LG97-9301	3944	2.5
LG04-5372	2 (37)	Rend x LG97-9301	3937	-2.2
LG04-4866	6 (25)	LG97-9015 x HS93-4118	3863	3.9
LD00-3309)	Check	3837	0.0

Uniform IV Test 2007-08 22 locations				
Entry	Pedigree	Kg/ha	Mat	
LG04-6000 LD00-3309	HS93-4118 x LG97-9912 Check	3964 3669	3.9 0.0	
Jilin 15 is varieties a	derived from 3 primitive nd was released in 1978.	e Chinese		
Jilin 15 is	13% of the parentage of	LG04-60)00.	

Origin of "Exotic" parents			
PI number	Cultivar	Origin	Year
PI 90566-1		China	193 0
PI 253665D		China	1958
PI 283331		Morocco	1962
PI 391594	Jilin No. 8	China	1974
PI 436682	Jilin No. 15	China	1979
PI 437851A		China	1980

Soybean Free Air Concentration Enrichment

Differential CO₂ Responders

5 year average increase from elevated CO_2

Entry	Kg/ha Ambient	Kg/ha Elevated	%∆
Loda	3621	4488	24%
HS93-4118	3541	3661	4%

Differential O₃ Responders

5 year average decrease from elevated O_3

Entry	Kg/ha Ambient	Kg/ha Elevated	%Δ
Dwight	3742	3225	-14%
LN97-15076	3191	2997	-6%

Transgenics

- Mostly proprietary research
- Broad spectrum disease resistance?
- Yield is genetically complex
- Second generation genes?

How to Increase Soybean Yield

- Shorter variety development time
- Selection for disease/pest resistance
- Understanding the genetics of yield
- Selection for parents and lines
- Use of exotic germplasm for yield
- Use of transgenes

